
A Framework for Handling Geophysical Datasets with the

Matlab Programming Language

Frank Colberg

JPL/ CALTECH

MS 300-302, Pasadena 91109, CA

Version 1.0

June 2008

1

Contents

1 Introduction and Motivation 4

1.1 Design and Concept . 5

2 ModelData in Depth 7

2.1 Framework identities . 7

2.2 Adding Objects . 7

2.3 Viewing Variables . 8

2.4 Extracting the data . 8

2.5 Customize Object Instances . 8

2.6 Saving Object Instances . 9

3 The Matlab Generic Plotting Tool (MGPLOT) 9

4 Setup 9

A Classes/ Declaration/ Usage 10

A.1 Class ModelData . 11

A.2 Class ecco2 . 14

References 17

B Examples 17

2

Abstract

This documentation serves as a user’s guide, describing the framework

of Matlab object oriented programming (OOP) features and the interface of

Matlab generic ploting tool (MGPLOT) for analyzing and visualizing geo-

physical datasets. A to date unique approach aims to unify the way different

datasets are handled. The framework encompasses different datatypes such

as NetCDF, pure binary and ASCII, hence allowing for maximum flexibility.

Typical datasets include the NCEP/ NCAR reanalyses, ROMS model output

and ECCO2 products. Several hands-on examples are shown to demonstrate

the flexibility and ease to use the software.

3

1 Introduction and Motivation

In todays scientific life a great amount of time is spend on analysing geophysical

(i.e. Model, Observational) datasets. Within the last two decades or so the typical

amount of data comprising a single dataset has increased drastically. This is partly

the result of increasing computational power, which allows for finer (higher) resolu-

tion in Ocean/ Atmosphere Models to exist, but also due to more accurate satellite

measurement, which lead to increasing amounts of produced data.

Particularly, model derived datasets are becoming extremely large and difficult

to handle. So far, the Scientists are using programs based on software such as

Matlab, Grads or Ferret or others. These software programs enable them to access

and manipulate the data. Depending on the data processing tool, the degree of

freedom or the flexibility in processing the data differs widely. Some data processing

tools allow for easy and quick plotting while others allow for ‘state of the art’ data

processing, but may be more difficult to handle. Nevertheless, Matlab is still the

most powerful and most widely available tool to date.

However, although most or all geophysical datasets exhibit standard attributes

such as coordinates, time indices, vertical levels etc., no integrated framework for

the Matlab programming language exist that may enable the researcher to use any

type of dataset in a similar or even the same fashion. Typically, dataset specific

scripts exists that are adequately able to extract a certain type of data. A more

advanced approach is to wrap these scripts around a function which allows for very

specific events to happen. Nevertheless, documentation is sparse and most of the

time the Scientists needs to implement their own data access routines and/ or to

modify existing scripts to justify their needs. Most disturbingly, these methods differ

for each and single dataset available.

Although many researches may prefer writing their own scripts just as to exert

the maximum amount of control to how and why data is preprocessed, it is worth

noting that this approach is still prone to unwanted errors and time consuming.

Therefore, it is clear that this approach is not sustainable and that valuable time is

repeatedly spend on tasks related to the assessment of variables of some dataset.

The presented framework intends to address some of these shortcomings. It

makes use of Matlab’s Object Orientated programming capabilities and effectively

allows users to handle different datasets in the same fashion. In addition, a graphical

user interface (MGPLOT) is naturally supported within this framework.

The framework has been developed specifically with the following thoughts in

mind:

4

• same or similar handling of different datasets stored in different formats

• easy to use for Matlab experts and beginners

• easy and quick visualizations of datasets and indices

• sophisticated/state of the art/ dataset manipulations are supported due to

command line integration

• a special focus is placed on the potential for expansion, allowing for the inclu-

sion of individual dataset solutions,

• sustainable data centric programming approach via OOP

1.1 Design and Concept

As briefly stated in Section 1 this framework is based on the object orientated

programming (OOP) features provided by Matlab. In the OOP world computer

programs are viewed as a collection of individual units, or objects, that act on each

other. This opposes the traditional view in which a program is seen as a collection of

actions only. One of the advantages of OOP techniques over the linear programming

techniques is that they enable programmers to create modules that do not need to

be changed when a new type of object is added. A programmer can simply create

a new object that inherits many of its features from existing objects.

Hence, at the core of the OOP philosophy stands the idea of a program code

that is easy to reuse and easy to expand. Arguably, the two most important aspects

of OOP are:

a) Class inheritance and multiple inheritance. Child classes are more specialized

versions of a class. They inherit attributes and behaviors from their par-

ent classes, and can introduce their own. For example, the class Dog might

have child-classes called Collie, Chihuahua, and GoldenRetriever. In this case,

Lassie would be an instance of the Collie subclass. Suppose the Dog class

defines a method called bark() and a property called furColor. Each of its

child-classes (Collie, Chihuahua, and GoldenRetriever) will inherit these prop-

erties, meaning that the programmer only needs to write the code for them

once. Each subclass can alter its inherited traits. For example, the Collie class

might specify that the default furColor for a collie is brown-and-white. The

Chihuahua subclass might specify that the bark() method produces a high

pitch by default. Subclasses can also add new members.

5

In fact, inheritance is an ’is-a’ relationship: Lassie is a Collie. A Collie is a

Dog. Thus, Lassie inherits the methods of both Collies and Dogs. (Source:

WIKIPEDIA).

b) Polymorphism in OOP is the ability of objects belonging to different data types

to respond to method calls of methods of the same name, each one according

to an appropriate type-specific behavior. One method, or an operator such

as +, -, or *, can be abstractly applied in many different situations. If a

Dog is commanded to speak(), this may elicit a bark(). However, if a Pig is

commanded to speak(), this may elicit an oink(). They both inherit speak()

from Animal, but their derived class methods override the methods of the

parent class. This is Overriding Polymorphism. (Source: WIKIPEDIA).

Matlab naturally uses these two OOP features. For example, adding integer

values in Matlab calls a different plus.m function than does adding two matrices. It

is easy to grasp how one might expand this approach towards geophysical datasets,

with different datasets needing different strategies for data extraction.

In line with OOP philosophy this framework defines a base class (ModelData)

which is capable of handling standard reading/ writing tasks. In addition, this class

implements the infrastructure that all other child classes may use. This includes

elementary functions allowing to set/ get object attributes, but also more complex

tasks like adding additional geophysical fields which may exist due to the specific

dataset structure. The base class does not know about the specific geophysical prop-

erties of a certain dataset and hence only the basic (native) variables are initialized

when using the ModelData object.

This concept is extended by defining child classes that contain the specific in-

formation about a certain dataset (such as names of variables, coordinates, z-levels,

etc.). More specifically this means assigning each substantial different dataset its

own class or object. This is similar to what has been described for the dog-class

example above.

For example a ROMS output file would be assigned a roms object. An ECCO

output file would be assigned an ecco object and so forth. Each of these objects are

child classes of the ModelData class. Hence they inherent some basic e.g. netcdf

reading capabilities. Furthermore each class implements a method getdata which

knows exactly how to extract and access the data for the specific data type. In

accordance with polymorphism this method may or may not overwrite the original

getdata method as implemented by ModelData, but may use ModelData capabilities

to perform basic reading tasks.

6

2 ModelData in Depth

If a certain datafile is assigned its class the returned object instance should be able to

provide the following informations and tasks: (a) know what variables are stored in

the datafile, (b) know their physical meaning, (c) know what other physical variables

can be derived from them, and (d) provide a way to get the data. This framework

achieves this by defining identities.

2.1 Framework identities

The framework distinguishes between three fundamental identities. The natives,

names and derived identities. The natives identitiy denotes all variables that

are stored in the datafile associated with the object-instance. The derived identity

results from the combination of two or more native identities or from the ability

to derive a different variable from a native one. For example a dataset may con-

sist of u, v velocities, which in this case are the native variables of the dataset.

Taken together they form the absolute velocity and the velocity vector field. These

are derived variables. Another example of a derived variable may be the zonal/

meridional temperature transport, which relates to T and u, v.

The names identity translates the datafile specific variable names to real world

names or names that the framework knows. Within the framework the names

identity is unique for each existing geophysical variable. That means sea surface

temperatures e.g. will always be denoted as Sea Surface Temperature in the names

context. The framework checks at initialization time for these translations and then

dynamically creates the possible valid relationships associated with each datafile.

Therefore, the names identity allows for the implementation of routines that

tie together the information of one or more native variables and decide if another

variable may be derived from it/ them.

2.2 Adding Objects

The OOP approach allows to override basic functions as described by polymorphism

(Section 1.1). This concept is used in this framework to allow for the possibility to

add two object instances of the same class. The resulting object variable contains the

combined information of the two individual instances plus any additional information

that is only available as a consequence of the combination of the two individual

object instances.

This approach has some practical consequence. For example consider the situ-

7

ation in which the u velocity of an arbitrary data/ model output is stored in one

file and the v velocity in another file. None of two files alone is able to provide

the necessary information to plot the velocity vector or the absolute velocity. In

practice one needs to extract the data from both files. When using this framework

it is possible to extract the absolute velocity by adding the two object instances.

This may seem trivial, but provides a powerful way to deal with plotting datasets

and is extensively used within MGPLOT (see Section 3). For examples see Section

B.

2.3 Viewing Variables

The framework implements Matlab typical syntax get to view and ’browse’ through

the content of an object instance. The above discussed identities natives, names,

derived are used to decide what kind of information is to be displayed. For specific

syntax usage see Section A, and the examples Section B

2.4 Extracting the data

The way to extract the actual data is similar to the browsing process. The framework

implements a function getdata which returns variable output arguments. Each data

class share the same basic functionality but may extend it to fulfill specific dataset

requirements.

For example, the ECCO2 model data output is known to be on 6 faces, so it

is desirable to being able to extract only one or all of them. Hence, the ecco2

class may implement something like getdata(face 1)etc.. A roms class on the other

hand does not need to know about faces but rather about σ-coordinates and how

to interpolate them onto z-levels. For specific syntax usage see Section A, and the

examples Section B.

2.5 Customize Object Instances

One strength of OOP is to set specific attributes for object instances. Allowing each

instance to be unique but still share some comon attributes given by the parent class.

This means that for example each setup of a certain model type is automatically

supported if the basic model features are known. This is useful when dealing for

example with the regional modelling system (ROMS) which can be setup quickly in

most regions of the world ocean. The framework, however, only needs one roms class.

Each instance may be related to a different model setup. In general the user does

8

not need to change or set individual model attributes. However, sometimes it may

be inevitable. Then the typical Matlab syntax set can be used to override default

variable definitions. For specific syntax usage see Section A, and the examples

Section B.

2.6 Saving Object Instances

It is possible to save object instance the same way as it is to save any other variable

in Matlab. Saving object instances may be useful if a great amount of individual

instances have been added to form one object.

3 The Matlab Generic Plotting Tool (MGPLOT)

MGPLOT is part of a framework described in the previous Sections (1-2) and is

aiming for easy plotting sensations with only little knowledge of the Matlab pro-

cessing language. It naturally supports object classes if they are part of the above

described framework. At the current development stage the following datasets are

supported by the framework and hence MGPLOT:

• NCEP monthly means

• ROMS (Ruttgers, UCLA, IRD)

• ECCO2

• WOA

Figure 6 shows a snapshot of MGPLOT. Please refer to Figure 6 and its captions

that provide the basic information of how to manage the GUI.

4 Setup

In order to setup the framework add the path of the installation directory either

at Matlab runtime or in the Matlab startup.m file. i.e. addpath(′thepath′) Once

the path is set MGPLOT (the graphical plotting tool) can be started by typing:

mgplot in the command line.

During the initialization process MGPLOT adds a number of additional pathes

to the environment. Without adding these pathes MGPLOT does not function. The

reason why this task is hidden from the user is to make the installation as easy as

9

possible. However, in some cases these pathes may interfere with the general users

settings/ environment. In this case they can be removed by typing: mgplot rmpath

on the command line.

In case the user wishes to benefit from the data classes and the plotting utilities

only, the additional pathes must be set manually by typing: mgplot addpath on the

command line. Again this will add all the pathes.

In order to use this framework NetCDF reading capabilities are required and

need to be installed for Matlab. Note, the setup has been tested under Linux only.

Problems with path names and/ or slash directions may occur when using Matlab

under Windows/ Mac.

MGPLOT lets the user customize the default pathes for different datasets. This

is done in file: mgplot initialize.m. For each data class that is supported in MG-

PLOT a path variable needs to be declared. The path could just be empty (default).

The setup procedure for the framework and MGPLOT:

• Add the path to the MGPLOT directory in the Matlab startup.m file or at

runtime

• Start Matlab and type mgplot in the command line to start the GUI

• Edit mgplot initialize.m to customize the default data pathes used when cre-

ating a new object with MGPLOT (optional)

• Start Matlab and type mgplot addpath to use the data-class definitions and

other tools without starting the GUI

• Type mgplot rmpath to remove the pathes associated with MGPLOT from

the Matlab environment

A Classes/ Declaration/ Usage

This Section lists the to date implemented class definitions. The framework has

been developed using Matlab version 7.4.0.287 (R2007a). The latest Matlab version

implements a new more timely approach for defining classes. The new class definition

may be used in future versions of this tool.

10

A.1 Class ModelData

ModelData is the base class from which all other data-classes are derived. The basic

task of ModelData is to provide NetCDF reading capabilities and to implement the

general structure for storing dataset specific variable-information. The ModelData

class implements the natives identity and has methods that allow for the creation of

the names and derived identity. These methods are only accessible from the child

classes. ModelData adds implements a fourth identity: the other identity. This

identity allows for viewing and retrieving variables with less than two dimensions,

such as coordinates and depth matrices.

In addition, the ModelData class implements a climatology and an anomaly

method when using getdata. The keywords are climatol and anomaly respectively.

These two methods may be invoked if the time index of a NetCDF-file is greater

than one. Additional features associated with the get/ set and getdata command

are listed below.

Create object instance:

OBJ = ModelData (filename)

Public methods implemented by ModelData:

• get ⇒ function: Provides access to object attributes

• set ⇒ function: Allows to set object attributes

• getdata ⇒ function: Provides access to object data

• plus operator ⇒ function: Adds two objects

Private methods implemented by ModelData:

• setfieldforall ⇒ function: Sets field attributes for all variables apparent in an

object. This function can be invoked via the set function. Keyword is forall

• addnativefield ⇒ function: Adds a native variable to the object

• addchildfield ⇒ function: Adds a child variable to the object

• addchildderivatives ⇒ function: Adds possible derived variables to the ob-

ject. This function can be invokes by a child class only and needs additional

information.

11

• getdata after extract data ⇒ function: Adds some functionality to getdata

methods (i.e. permute, reshape, anomaly, climatology).

• getdata after extract sum ⇒ function: Adds functionality to getdata methods

• getdata after extract average ⇒ function: Adds functionality to getdata meth-

ods

Access object attribute:

VALUE = get (OBJ, identity)

with identity:

• ’natives’ ⇒ VARIABLE ⇒ ATTRIBUTE ⇒ VALUE

• ’other’ ⇒ VARIABLE

• ’fields’ ⇒ data

• ’fields’ ⇒ other

with ATTRIBUTE for each VARIABLE

• ’varis’ string of type char ⇒ denotes the identitity

• ’var’ string of type char wrapped in cell ⇒ name of variable

• ’dimension’ scalar of type integer ⇒ dimension

• ’levels’ scalar of type integer ⇒ number of vertical levels

• ’fname’ string of type char ⇒ path to object file name

• ’size’ vector of type integer ⇒ size of VARIABLE

• ’tndx’ scalar of type integer ⇒ number of time records

• ’ID’ ⇒ not used at present

• ’gname’ string of type char ⇒ path to grid file if given

• ’precision’ string of type char ⇒

• ’netcdf’ ⇒ not used at present

• ’i’ scalar of type integer ⇒ number of i-curves

• ’j’ scalar of type integer ⇒ number of j-curves

12

• ’region’ vector of type integer with vector=[1 i 1 j] ⇒ denotes the region of

the variable

• ’levelsfull’ vector of type integer wrapped in cell ⇒ needed for MGPLOT

• ’tndxfull’ vector of type integer wrapped in cell ⇒ needed for MGPLOT

• ’levelsdepth’ ⇒ depth matrix

Set object attribute:

OBJ = set (OBJ, identity)

with identity:

• ’natives ⇒ VARIABLE ⇒ ATTRIBUTE ⇒ VALUE

• ’other’ ⇒ VARIABLE

• ’fields’ ⇒ data

• ’fields’ ⇒ other

with ATTRIBUE same as for get.

Extract data:

VAR = getdata (OBJ, ’natives’, VARNAME, options)

with options:

• ’region’, vector of type integer with vector = [i1 i2 j1 j2] ⇒ returns the specified

region for the selected variable

• ’tndx’, vector of type integer ⇒ returns the specified time index (indices) for

the selected variable

• ’levels’, vector of type integer ⇒ returns the specified vertical level(s) for the

selected variable

• ’npoints’, scalar of type integer ⇒ extracts every nth points of the variable

• ’anomaly’, vector of type integer [1..max(numberoftimerecords) orderofanomay]

⇒ calculates the anomaly of given order (last vector value), with a mean cal-

culated over vector[1..end(-1)]

• ’climatol’, vector of type integer ⇒ returns the climatology of given order

13

A.2 Class ecco2

The ecco2-class implements reading capabilities for native (i.e. binary) ecco2 output.

Hence, it mainly uses the structure for storing datatype specific information given

by ModelData. It overrides the ModelData getdata method. Most convienently the

class allows to extract individual ecco2-faces but will also interpolate ecco2-data

onto a regular 0.25deg grid. This behaviour is controlled with the face parameter

in getdata. Furthermore, the ecco2-class allows to specify the latitude and longi-

tude for the extracted region. The keyword is lonlat in the getdata method. This

functionality is only available when global interpolation is chosen. In addition it is

possible to loop over different ecco2 files that are in the same path as the initializa-

tion file via setting the sequence parameter in getdata. The parameter can either be

a vector with integers denoting the ecco2 files or a string with value allnames. In

the latter case the loop will be over all the files for the selected variable that are in

the original file path.

The ecco2-class sets the time for the datafile in the attribute realtime. When-

ever the user changes either the timesteplength or the timestep, the ecco2-class will

update realtime. Internally, the function ts2dte.m is used for that purpose. The

ecco2-class relies heavily on external helper files that provide the relevant grid infor-

mation including the angles that are needed for the interpolation onto the regular

grid. This information is stored in the attributes: xcdata, ycdata, anglecssn. The

class assumes that the precision for a variable is allways real ∗ 4 except for the

temperature where it is real ∗8. However, the precision information for any variable

can be changed using the set command.

Create instance:

OBJ = ecco2 (filename)

Private methods implemented by ecco2:

• settime.m

• getcoordinates.m

• setlevelsforall.m

External ecco2 functions: readbin.m, ts2dte.m, rdda.m

Get object attribute:

VALUE = get (OBJ, identity)

with identity

14

• ’natives’ ⇒ VARIABLE ⇒ ATTRIBUTE ⇒ VALUE

• ’derived’ ⇒ VARIABLE ⇒ ATTRIBUTE ⇒ VALUE

• ’names’ ⇒ VARIABLE ⇒ ATTRIBUTE ⇒ VALUE

with ATTRIBUTE for each VARIABLE:

• ’timestep’ ⇒ ECCO2 timestep

• ’timesteplength’ ⇒ ECCO2 time step length.

• ’realtime’⇒ realtime

• ’xcdata’ ⇒ path to XCDATA.dat

• ’xcdata’ ⇒ path to XCDATA.dat

• ’precision’ ⇒ precision for VARIABLE

• ’anglecssn’ ⇒ path to Angle CSSN .mat

Set object attribute:

OBJ = set (OBJ, identity)

with identity

• ’natives’ ⇒ VARIABLE ⇒ ATTRIBUTE ⇒ VALUE

• ’derived’ ⇒ VARIABLE ⇒ ATTRIBUTE ⇒ VALUE

• ’names’ ⇒ VARIABLE ⇒ ATTRIBUTE ⇒ VALUE

with ATTRIBUTE for each VARIABLE:

• ’timestep’, scalar of type integer ⇒ set ECCO2 timestep. When set recalcu-

lates the attribute ’realtime’

• ’timesteplength’ scalar of type integer ⇒ set ECCO2 time step length. When

set recalculates the ’realtime’

• ’xcdata’, string of type char ⇒ set path to XCDATA.dat

• ’xcdata’, string of type char ⇒ set path to XCDATA.dat

• ’precision’,string of type char with value real*4 or real*8 ⇒ set precision for

VARIABLE

15

• ’anglecssn’, string of type char ⇒ set path to Angle CSSN.mat

Extract data:

variableoutput = getdata (OBJ, identity, options)

with identity

• ’natives’ ⇒ VARIABLE

• ’derived’ ⇒ VARIABLE

with variableoutput:

1. [lon, lat] if options(1) ⇒ ’coordinates’, options(2) ⇒ ’horizontal’

2. [z-matrix] if options(1) ⇒ ’coordinates’, options(2) ⇒ ’vertical’

3. [var] for any given options

4. [var, lon, lat] for any given options except for 1. and 2.

5. [var, lon, lat, mask] for any given options except for 1. and 2.

6. [var, lon, lat, mask, var1, var2] for any given options except for 1. and 2.

with options

• ’lonlat’, vector containing [longitude1 longitude2 latitude1 latitude2]

• ’face’ vector of type integer either 0 or [1..max(numberoffaces)]

– if 0 returns global interpolated grid with size 1440 × 720

– otherwise returns face(s) given in vector

• ’sequence’

– vector of type integer denoting the specific ecco2 files or

– string of type char with value allnames

16

References

B Examples

The following datasets/ models are covered by the examples section:

• ECCO2

• ROMS

• NCEP/NCAR Reanalysis Monthly Means

(http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.derived.surfaceflux.html)

Note, to successfully reproduce the examples the framework needs to be implemented

correctly. Please refer to Section 4 for the general setup procedure.

17

Figure 1: Example: Viewing the content of an object-instance.

18

Figure 2: Example: Extract and plot the content of an object-instance.

19

Figure 3: Example: Extract and plot the content of an object-instance.

20

−2 0 2 4 6 8 10 12 14 16 18
−6000

−5000

−4000

−3000

−2000

−1000

0

De
pth

 [m
]

Temperature [deg/C]

Figure 4: Example: Extract and plot the content of an object-instance.

21

0 20 40 60 80 100 120 140
27.8

28

28.2

28.4

28.6

28.8

29

29.2

29.4

29.6

29.8

Time

SS
T [

deg
C]

Figure 5: Example: Extract and plot the content of an object-instance. This

examples does only work for MGPLOT-1.4-ecco2 version !!

22

Figure 6: Snapshot of the Matlab Generic Plotting Tool (MGPLOT).

23

1 Source Panel: Choose base object (needs to be selected prior opening file !!)

2 File Panel: (a, b) Open File 1/2, (c) Add object instance to file, (d) Select

difference plot between File 1/2, (e, f) Select time index for File 1/2, (g, h)

Select level for File 1/2, (i, j) Select variable for File 1/2, (k, l) Select derived

variable for File 1/2, (m, n) Choose scale factor for variable of File 1/2

3 Figure Panel: (a, b) Select figure for File 1/2, (c) Figure for difference plot,

(d) Select subplot

4 Plot Type Panel: (a) Choose plot type, (b) Select anomaly plot (not yet

implemented)

5 Plot Options Panel: (a) Select projection, (b, c) Select specific area, (d) Try

matching selected area with grid points of selected object (does not allways

work, depends on algorithm convergence), (e, f) Select caxis, (g, h) Select M-

Mapping toolbox (on/ off, default is on, otherwise projections do not work), (i)

Select mask (on/ off) not implemented yet, (j) Select to plot every nth point,

(k) Select scale factor for quiver plot

6 Region, Vertial depth Panel: (a) Selected crop regions, (b) Reset region to

original size, (c) Exchange region with M-Mapping area, (d) Select region to

crop, (e, f) Press and choose point on map (works only if resolution is not

too high - need new algorithm), (d) Select depth for vertical or transport plot

(NaN NaN means plot over the whole colum, otherwise: -500 0)

7 Contours Panel: Upper: Choose kind of contour plot for positive values, with

(a) pcolor, (b) contourf, (c) pcolor with contour line-style specified in (d),

Middle: For negative values, Lower: For zero contour line, (d) Change contour

style and labelling (see help contourf2 for details) (e) Select colormap (f, g)

Select colorbar (i) Hold on button

8 Selected Panel: (a) Display level to plot for variable: Select negative value for

σ-coordinate interpolation, (b) Shows selected variable to plot

9 Sequence Panel: (a) Select sequence, (b) Choose if sequence over time index

or over File (only supported for ROMS model output at the moment)

10 Plot Panel: (a) Plot variable, (b) Select scene: Calls specific routine which

implements own plotting script

24

